DruTeX Demo Page


$ foo $
In coding theory, the Zya blov bound, is a lower bound on the rate $ R $ and relative distance $ \delta $ of the concatenated codes.

Statement of the bound

Let $ R222 $ be the rate of the outer code $ C_{out} $ and $ \delta $ be the relative distance, then the rate of the concatenated codes satisfies the following bound.

\mathcal{R} \ge {\max\limits_{0\le r\le{1- H_q(\delta + \varepsilon)}}} r(1 - {\delta \over {H_q ^{-1}(1 - r) - \varepsilon}})

where r55545454 is t

Syndicate content